
�������
��	���
�����
�

AN447
Automatic baud rate detection for the
80C51

Greg Goodhue June 1993

INTEGRATED CIRCUITS

Philips Semiconductors Application note

AN447Automatic baud rate detection for the 80C51

Author: Greg Goodhue

2530June 1993

This note documents a method to automatically establish the correct
baud rate for serial communications in many 80C51 family
applications. The first character received after a program is started
is used to measure the baud rate empirically.

This can eliminate the need to have setup switches whose settings
are difficult to remember and all of the other headaches associated
with applications that use multiple baud rates. One might assume
that a reliable method of accomplishing this might be impossible
without severely limiting the characters that could be recognized.
The problem is in finding a timing interval that can be measured in a
large number of possible characters under a wide variety of
conditions.

Measuring a single bit time would be the obvious way to quickly
determine what baud rate is being received. However, many ASCII
characters don’t have an example of a single bit time in the RS-232
pattern. For most characters, the length of the entire transmission
from the start bit to the last “visible” transition will fall within certain
ranges as long as some reasonable assumptions can be made
about the possible baud rates (i.e. that they are standard baud
rates). Moreover, many systems now use 8 data bits and no parity
for ASCII transmissions. In this format, normal ASCII characters will
never have the MSB set and since UARTs send data LSB first/MSB
last, the program would always be able to “see” the beginning of the
stop bit.

The following baud rate detection routine waits for a start bit (falling
edge) on the serial input pin and then starts timer 0. At every
subsequent rising edge of the serial data, the timer value is captured
and saved. When the timer overflows, the last captured value will
indicate the duration of the serial character from the start bit to the
last 0 to 1 transition (hopefully the stop bit).

The table CmpTable contains the maximum timer measurement that
is accepted for each baud rate. These values were picked such that
a timed interval of only 4 data bit times (plus the start bit time) will
still produce the correct baud rate.

There is an assumption in this method that anyone using it needs to
be aware of. That is, that this technique depends on only one
character being received during the sampling window, which has to
be at least as long as a typical character at the slowest baud rate
that can be accepted. Essentially this means that the data must
normally come from someone typing at a keyboard.

On our PCs, we were not able to fool the program by typing two
characters in quick succession. The PC function keys did present a
problem because they send two characters in a tight sequence, and

fooled the program into detecting the wrong baud rate. In the
example program, which is designed for a 12 MHz clock, the total
sample interval is about 65 milliseconds, or about twice the duration
of an RS-232 character sent at 300 baud.

If parity is used, a possibility of a baud rate determination error
happens when the four MSBs and the parity bit of the character
received are all ones. This can happen for the lower case letters “p”
through “z”, plus curly brackets, vertical bar (|), tilde (~), and
“delete”, depending on whether the system uses odd or even parity.
Note that the usual prompt characters that a user would type to get
a system’s attention (e.g. space, carriage return, and escape) are
NOT subject to this limitation.

Because of the way this program works, the first input character that
is used to detect the baud rate is lost since the UART cannot be set
to the correct baud rate until after the first character has been timed.
Also, most “real” programs using this technique would want to
repeat the baud rate detection process if framing errors are detected
at the UART during normal operation.

To calculate CmpTable values for other oscillator frequencies and
baud rates, use the following equation:

Table entry �

Osc(MHz)
Baud Rate

�
5
12

Remember that the table entry is a two byte value, so the result of
the above must be split into upper and lower bytes (easy if you have
a hexadecimal calculator). It may also be possible to get the
assembler to do all of the calculations for you.

The above equation was derived as follows:

maximum
timer value
(table entry)

�

minimum recognition time
machine cycle time

Minimum
recognition = bits-to-recognize

#-of-bits
byte time×

time

Note: ‘#-of-bits’ (the number of “visible” bits) is 9, and
bits-to-recognize (the minimum # of bits to recognize) is 5 for 8-N-1
communication.

byte time �
1

baud rate
� #-of-bits

machine
cycle time �

Osc frequency
12

Philips Semiconductors Application note

AN447Automatic baud rate detection for the 80C51

June 1993 2531

;***

; Automatic Baud Rate Detection Test

;***

$Title(Automatic Baud Rate Detection Test)
$Date(12–16–91)
$MOD552

;***

; Definitions

;***

RX BIT P3.0 ;Location of serial receive pin.
CharH DATA 30h ;Holds high byte of frame timer result.
CharL DATA 31h ;Holds low byte of frame timer result.
BaudRate DATA 32h ;Holds final baud rate determination.
Display EQU P4 ;Port to display result for debug.

;***

; Reset and Interrupt Vectors

;***

 ORG 8000h

Start: ACALL AutoBaud ;Go try to get a baud rate value.
 MOV Display,BaudRate ;Display baud rate value for debug.
 SJMP Start

;***

; Subroutines

;***

; AutoBaud Rate Detect Routine.
; Attempts to detect baud rate from first received character, by measuring
; the length of the character. Some characters may not work properly,
; primarily those that end with more than 3 (4?) ones in a row.
; Returns with ACC = baud rate pointer.

AutoBaud: MOV TMOD,#01h ;Initialize timer 0 (UART baud rate timer).
 MOV TH0,#0 ;Put timer 0 in 16–bit counter mode.
 MOV TL0,#0
 MOV TCON,#0

 MOV CharH,#0 ;Initialize timer result.
 MOV CharL,#0

AB0: JB RX,AB0 ;Wait for serial start bit.
 SETB TR0 ;Start timer.

AB1: JB TF0,AB3 ;Check for timer overflow.
 JNB RX,AB1 ;Check for a rising edge on serial data.
 MOV CharH,TH0 ;Capture timer value at this serial edge.
 MOV CharL,TL0

AB2: JB TF0,AB3 ;Check for timer overflow.
 JB RX,AB2 ;Check for falling edge on serial data.
 SJMP AB1 ;Go back and repeat sampling.

Philips Semiconductors Application note

AN447Automatic baud rate detection for the 80C51

June 1993 2532

AB3: CLR TR0 ;Maximum sample time has expired, check result.
 CLR TF0 ;Begin by stopping timer and clearing flag.

 MOV BaudRate,#19 ;Set up table pointers.
CmpLoop: MOV A,BaudRate
 MOV DPTR,#CmpTable
 MOVC A,@A+DPTR ;Get a table entry for comparison.
 DEC BaudRate
 CJNE A,CharH,Cmp1 ;Check result range.
 SJMP CmpLow ;High byte table = timed value, check low byte.
Cmp1: JC CmpMatch ;A match if table value is < timed value.
 DJNZ BaudRate,CmpLoop ;Check for end of comparison table.
 SJMP CmpMatch

CmpLow: MOV A,BaudRate
 MOVC A,@A+DPTR ;Get a table entry for comparison.
 CJNE A,CharL,Cmp2 ;Check result range.
 SETB C ;Match if equal.
Cmp2: JC CmpMatch ;C set if A < low byte of result.
 DJNZ BaudRate,CmpLoop ;Check for end of comparison table.

CmpMatch: MOV A,BaudRate ;Comparison complete,
 CLR C ; get final baud rate index,
 RRC A
 MOV BaudRate,A ; and save.
 RET

; Compare table holds timer values for the transition points of the accepted
; baud rates. Entries are LSB, MSB. These values are for 12 MHz operation.

CmpTable:
 DB 40h,0 ;0 – out of range, value too low.
 DB 80h,0 ;1 – 38400 baud.
 DB 0,01h ;2 – 19200 baud.
 DB 0,02h ;3 – 9600 baud.
 DB 0,04h ;4 – 4800 baud.
 DB 0,08h ;5 – 2400 baud.
 DB 0,10h ;6 – 1200 baud.
 DB 0,20h ;7 – 600 baud.
 DB 0,40h ;8 – 300 baud.
 DB 0,80h ;9 – out of range, value too high.

 END

Philips Semiconductors Products Product specification

AN447Automatic baud rate detection for the 80C51

Philips Semiconductors and Philips Electronics North America Corporation reserve the right to make changes, without notice, in the products,
including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips
Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright,
or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask
work right infringement, unless otherwise specified. Applications that are described herein for any of these products are for illustrative purposes
only. Philips Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing
or modification.

LIFE SUPPORT APPLICATIONS
Philips Semiconductors and Philips Electronics North America Corporation Products are not designed for use in life support appliances, devices,
or systems where malfunction of a Philips Semiconductors and Philips Electronics North America Corporation Product can reasonably be expected
to result in a personal injury. Philips Semiconductors and Philips Electronics North America Corporation customers using or selling Philips
Semiconductors and Philips Electronics North America Corporation Products for use in such applications do so at their own risk and agree to fully
indemnify Philips Semiconductors and Philips Electronics North America Corporation for any damages resulting from such improper use or sale.

Philips Semiconductors
811 East Arques Avenue
P.O. Box 3409
Sunnyvale, California 94088–3409
Telephone 800-234-7381

 Copyright Philips Electronics North America Corporation 1997
All rights reserved. Printed in U.S.A.

